the method of radial basis functions for the solution of nonlinear fredholm integral equations system.qqq

Authors

j nazari

khorasgan branch, islamic azad university m nili ahmadabadi

h almasieh

department of mathematics, isfahan (khorasgan) branch, islamic azad university, isfahan, iran.

abstract

in this paper, an effective and simple numerical method is proposed for solving systems of integral equations using radial basis functions (rbfs). we present an algorithm based on interpolation by radial basis functions including multiquadratics (mqs), using legendre-gauss-lobatto nodes and weights. also a theorem is proved for convergence of the algorithm. some numerical examples are presented and results are compared to the analytical solution and triangular functions (tf), delta basis functions (dfs), block-pulse functions , sinc fucntions, adomian decomposition, computational, haar wavelet and direct methods to demonstrate the validity and applicability of the proposed method.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

The method of radial basis functions for the solution of nonlinear Fredholm integral equations system.

In this paper, An effective and simple numerical method is proposed for solving systems of integral equations using radial basis functions (RBFs). We present an algorithm based on interpolation by radial basis functions including multiquadratics (MQs), using Legendre-Gauss-Lobatto nodes and weights. Also a theorem is proved for convergence of the algorithm. Some numerical examples are presented...

full text

A meshless technique for nonlinear Volterra-Fredholm integral equations via hybrid of radial basis functions

In this paper, an effective technique is proposed to determine thenumerical solution of nonlinear Volterra-Fredholm integralequations (VFIEs) which is based on interpolation by the hybrid ofradial basis functions (RBFs) including both inverse multiquadrics(IMQs), hyperbolic secant (Sechs) and strictly positive definitefunctions. Zeros of the shifted Legendre polynomial are used asthe collocatio...

full text

existence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types

بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی ‎‏بیان شد‎‎‏ه اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...

15 صفحه اول

a meshless technique for nonlinear volterra-fredholm integral equations via hybrid of radial basis functions

in this paper, an effective technique is proposed to determine thenumerical solution of nonlinear volterra-fredholm integralequations (vfies) which is based on interpolation by the hybrid ofradial basis functions (rbfs) including both inverse multiquadrics(imqs), hyperbolic secant (sechs) and strictly positive definitefunctions. zeros of the shifted legendre polynomial are used asthe collocatio...

full text

A meshless method for optimal control problem of Volterra-Fredholm integral equations using multiquadratic radial basis functions

In this paper, a numerical method is proposed for solving optimal control problem of Volterra integral equations using radial basis functions (RBFs) for approximating unknown function. Actually, the method is based on interpolation by radial basis functions including multiquadrics (MQs), to determine the control vector and the corresponding state vector in linear dynamic system while minimizing...

full text

Evaluating the solution for second kind nonlinear Volterra Fredholm integral equations using hybrid method

In this work, we present a computational method for solving second kindnonlinear Fredholm Volterra integral equations which is based on the use ofHaar wavelets. These functions together with the collocation method are thenutilized to reduce the Fredholm Volterra integral equations to the solution ofalgebraic equations. Finally, we also give some numerical examples that showsvalidity and applica...

full text

My Resources

Save resource for easier access later


Journal title:
journal of linear and topological algebra (jlta)

جلد ۶، شماره ۰۱، صفحات ۱۱-۲۸

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023